Geographically Weighted Regression (GWR)

Feature Description

Geographically Weighted Regression Analysis

Parameter Description

Parameter Default Value Description Parameter Type
Source Dataset   Specifies the dataset to be calculated. It can be a point, line, or polygon dataset DatasetVector
Target Datasource   Specifies the datasource storing the result dataset Datasource
Result Dataset Name   Specifies the name of the result dataset String
Bandwidth Determination Method AICC Method for determining bandwidth BandWidthType
Explanatory Field Name   Name of the explanatory field String
Kernel Function Type GAUSSIAN Type of kernel function KernelFunction
Modeling Field   Field for modeling String
Kernel Type FIXED Type of kernel KernelType
Neighbor Count
(Optional)
0 Number of neighbors Integer
Bandwidth Range
(Optional)
0.0 Range of bandwidth Double
GWR Prediction Dataset
(Optional)
  Dataset for geographically weighted regression prediction DatasetVector
Prediction Result Datasource
(Optional)
  Datasource for storing prediction results Datasource
Prediction Result Dataset Name
(Optional)
  Name of the prediction result dataset String
Field Mapping for Prediction Data
(Optional)
  Field mapping for prediction data Object

Output

Analysis Results: Include geographically weighted regression summary results and result dataset.

The result dataset contains the following attribute fields:
Cross-Validation (CVScore), Predicted Value (Predicted), Regression Coefficients (Intercept, C1_ExplanatoryField), Residual (Residual), Standard Error (StdError), Coefficient Standard Errors (SE_Intercept, SE1_ExplanatoryField), Pseudo t-values (TV_Intercept, TV1_ExplanatoryField), and Studentised Residual (StdResidual). As shown below:

  • Cross-Validation (CVScore): The squared sum of differences between estimated and actual values during cross-validation. Serves as a model performance metric.
  • Predicted Value (Predicted): Estimated values obtained from geographically weighted regression.
  • Regression Coefficient (Intercept): Intercept term of the regression model, representing the predicted value when all explanatory variables are zero.
  • Regression Coefficient (C1_ExplanatoryField): Indicates the strength and direction of relationship between explanatory and dependent variables. Positive values denote positive correlation, negative values indicate inverse correlation.
  • Residual (Residual): Unexplained portion of the dependent variable (difference between predicted and actual values). Smaller residuals indicate better model fit.
  • Standard Error (StdError): Measures reliability of estimates. Smaller values suggest better model performance.
  • Coefficient Standard Error (SE_Intercept, SE1_ExplanatoryField): Assesses reliability of coefficient estimates. Larger values may indicate local multicollinearity issues.
  • Pseudo t-value (TV_Intercept, TV1_ExplanatoryField): Tests coefficient significance. Values exceeding critical thresholds indicate statistically significant coefficients.
  • Studentised Residual (StdResidual): Residual-to-standard-error ratio. Values within (-2, 2) suggest normal distribution and homoscedasticity; values outside this range indicate outliers.