Object Detection - Imagery Analysis

Instructions for use

Object detection is based on deep learning neural network models, which automatically determine and recognize the category and location of objects in an image. It can detect multiple categories of objects simultaneously and outputs the results in XML format. The XML file records the category, location, and confidence level of each detected object. The object detection function is characterized by fast detection speed and high accuracy.

Parameter Description

Parameter name Default Parameter description Parameter Type
File Type Dataset Specify File Type. Select Dataset or Folder Type. Boolean
Model File   Specify Model File (*.sdm) for Picture Object Detection String
Probability Threshold 0.5 The system will calculate the probability of meeting the target characteristics for each detected object, and then Detection resultOnly saving objects with a score above this value. The default value is 0.5. Double
Deduplicate Threshold 0.3 Specifies the threshold for Remove Duplicate Objects. Double
Amount of single step operation 1 Specifies the number of pictures to process at one time when detecting Integer
Processor type GPU Specifies the processor type String
GPU number 0 Input the GPU number to support multi-card reasoning, that is, input multiple GPU numbers. If "0, 1, 2" is entered, it will automatically become "012" String
Other Parameter Settings
(Optional)
false Check this box to set the Deduplicate Threshold Boolean
Result Datasource   Datasource where the specified Dataset storing the result resides Datasource
Result Dataset ObjectDetectionResult The specified Resulting dataset name. String

Output Result

Parameter name Parameter description Parameter Type
Result Dataset Result Dataset DatasetVector