Object Detection - Imagery Analysis
Instructions for use
Object detection is based on deep learning neural network models, which automatically determine and recognize the category and location of objects in an image. It can detect multiple categories of objects simultaneously and outputs the results in XML format. The XML file records the category, location, and confidence level of each detected object. The object detection function is characterized by fast detection speed and high accuracy.
Parameter Description
Parameter name | Default | Parameter description | Parameter Type |
---|---|---|---|
File Type | Dataset | Specify File Type. Select Dataset or Folder Type. | Boolean |
Model File | Specify Model File (*.sdm) for Picture Object Detection | String | |
Probability Threshold | 0.5 | The system will calculate the probability of meeting the target characteristics for each detected object, and then Detection resultOnly saving objects with a score above this value. The default value is 0.5. | Double |
Deduplicate Threshold | 0.3 | Specifies the threshold for Remove Duplicate Objects. | Double |
Amount of single step operation | 1 | Specifies the number of pictures to process at one time when detecting | Integer |
Processor type | GPU | Specifies the processor type | String |
GPU number | 0 | Input the GPU number to support multi-card reasoning, that is, input multiple GPU numbers. If "0, 1, 2" is entered, it will automatically become "012" | String |
Other Parameter Settings (Optional) |
false | Check this box to set the Deduplicate Threshold | Boolean |
Result Datasource | Datasource where the specified Dataset storing the result resides | Datasource | |
Result Dataset | ObjectDetectionResult | The specified Resulting dataset name. | String |
Output Result
Parameter name | Parameter description | Parameter Type |
---|---|---|
Result Dataset | Result Dataset | DatasetVector |