Object Detection

Feature Description

Object detection utilizes deep learning neural network models to automatically determine and identify object categories and locations in images. It can detect multiple object categories simultaneously and output results in XML format, which records object categories, locations, and confidence scores. This feature demonstrates fast detection speed and high accuracy.

Parameter Description

Parameter Name Default Value Description Type
File Type Dataset Specify file type. Available options: dataset or folder. Boolean
Model File   Specify model file (*.sdm) for image object detection String
Probability Threshold 0.5 The system calculates probability scores reflecting object feature compliance. Only objects with scores above this threshold will be saved. Default: 0.5. Double
Deduplicate Threshold 0.3 Specifies threshold for duplicate removal Double
Batch Size 1 Specifies number of images processed per detection batch Integer
Processor Type GPU Specifies processor type String
GPU ID 0 Input GPU ID(s) for multi-card inference. Multiple IDs should be comma-separated (e.g., "0,1,2" will be converted to "012") String
Additional Parameters
(Optional)
false Check this box to enable deduplicate threshold configuration Boolean
Result Datasource   Specifies datasource containing result dataset Datasource
Result Dataset ObjectDetectionResult Specifies name for output dataset String

Output

Parameter Name Description Type
Result Dataset Output result dataset DatasetVector