Instructions for use
Land cover classification of images involves analyzing the spectral and spatial information of various land cover types in remote sensing images to assign semantic category labels to each pixel in the image with semantic information, thereby achieving land cover classification. This includes categories such as buildings, forest land, grassland, paddy fields, and agricultural land.
In comparison to binary classification, land cover classification uses neural network models to determine which specific category within the set of interest categories each pixel belongs to. This approach enables multi-class land cover identification and allows for calculating information such as the location, boundaries, and area of each category of interest.
Parameter Description
Parameter name | Default | Parameter description | Parameter Type |
---|---|---|---|
File Type | Dataset | Specify File Type. Select Dataset or Folder Type. | Boolean |
Model File | Specify Model File (*.sdm) for Multiple Classification | String | |
Tile overlap (pixel) | 0 | Specify a Tile overlap (pixel) value to reduce the problem of inadequate prediction of slice edge data. The larger the slice overlap, the longer it takes to infer the entire image | Integer |
Amount of single step operation | 1 | Specifies the number of pictures to process at one time when reasoning | Integer |
Processor type | GPU | Specifies the processor type | String |
GPU number | 0 | Input the GPU number to support multi-card reasoning, that is, input multiple GPU numbers. If "0, 1, 2" is entered, it will automatically become "012" | String |
Other Parameter Settings (Optional) |
false | Check this box to set the Bounds Dataset/Datasource parameter. | Boolean |
Result Datasource | Datasource where the specified Dataset storing the result resides | Datasource | |
Result Dataset | multiclassify_result | The specified Resulting dataset name. | String |
Output Result
Parameter name | Parameter description | Parameter Type |
---|---|---|
Result Dataset | Result Dataset | DatasetVector |