Multiple Classification

Instructions for use

Land cover classification of images involves analyzing the spectral and spatial information of various land cover types in remote sensing images to assign semantic category labels to each pixel in the image with semantic information, thereby achieving land cover classification. This includes categories such as buildings, forest land, grassland, paddy fields, and agricultural land.

In comparison to binary classification, land cover classification uses neural network models to determine which specific category within the set of interest categories each pixel belongs to. This approach enables multi-class land cover identification and allows for calculating information such as the location, boundaries, and area of each category of interest.

Parameter Description

Parameter name Default Parameter description Parameter Type
File Type Dataset Specify File Type. Select Dataset or Folder Type. Boolean
Model File   Specify Model File (*.sdm) for Multiple Classification String
Tile overlap (pixel) 0 Specify a Tile overlap (pixel) value to reduce the problem of inadequate prediction of slice edge data. The larger the slice overlap, the longer it takes to infer the entire image Integer
Amount of single step operation 1 Specifies the number of pictures to process at one time when reasoning Integer
Processor type GPU Specifies the processor type String
GPU number 0 Input the GPU number to support multi-card reasoning, that is, input multiple GPU numbers. If "0, 1, 2" is entered, it will automatically become "012" String
Other Parameter Settings
(Optional)
false Check this box to set the Bounds Dataset/Datasource parameter. Boolean
Result Datasource   Datasource where the specified Dataset storing the result resides Datasource
Result Dataset multiclassify_result The specified Resulting dataset name. String

Output Result

Parameter name Parameter description Parameter Type
Result Dataset Result Dataset DatasetVector